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Exploiting the Diversity of Time Scales in the 
Immune System: A B-Cell Antibody Model 
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Using the continuous shape space formalism, we develop an immune system 
model involving both B lymphocytes and antibody molecules. The binding and 
cross-linking of receptors on B cells stimulates the cells to divide and, with a lag, 
to secrete antibody. Using the method of multiple scales, we show how to 
correctly formulate long-time-scale equations for the population dynamics of B 
cells, the total antibody concentration, and rate of antibody secretion. We 
compare our model with previous phenomenological formulations. 
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1. I N T R O D U C T I O N  

The immune system is a complex system of interacting cells and molecules. 
The cells of  the immune system are a class of white blood cells called 
lymphocytes.  Chemical interactions between solution-phase molecules and 
cell surface receptors allow lymphocytes  to sense their environment.  
Ult imately such l igand-receptor  interactions largely determine the activity 
of the immune system. Thus, tor example, the binding of  antigen or anti- 
idiotypic an t ibody to the immunoglobul in  receptors on a B cell can 
stimulate the cell into proliferation and ant ibody secretion. 

Most  models of the immune system have ignored the detailed chemical 
interactions between receptors and ligands and have at tempted to charac- 
terize in a purely phenomenological  way the behavior  of immune system 
cells. Ant ibody is frequently neglected and implicitly assumed to have a 
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concentration proportional to the B-cell concentration. (~4) We have 
previously shown (4) that this can be an unrealistic assumption that leads to 
significantly different dynamics than models in which antibody is explilcitly 
present. For example, models that incorporate both antibody and B cells 
have been shown to exhibit complex dynamics characterized by oscillatory 
and chaotic behavior (3'1~ similar to that seen in recent experiments. (8) 
When antibody and B cells have the same lifetime or if antibody is 
eliminated from the model, such complex behavior is eliminated. (3'12) 

We recognize that in modeling, some simplifications must be made. 
Otherwise the models are so complicated that efficient analysis is very dif- 
ficult and understanding of the results essentially impossible. As a contribu- 
tion to the simplification process, we show in an immune system model 
involving both B cells and antibody molecules how to reduce greatly the 
number of differential equations and also how to bypass stiffness problems 
in numerical integration. This is accomplished by properly taking into 
account the fact that chemical reactions take place on a time scale 
(milliseconds to seconds, perhaps minutes) that is much shorter than 
the time scales characteristic of cellular changes (e.g., activation, 
proliferation--hours to days). We provide formal justification of our 
simplifications by means of the method of multiple scales. This method was 
introduced by Segel and Perelson (15~ in the context of a simpler chemical 
model in which receptor cross-linking was ignored. 

B cells are the class of lymphocytes in the immune system that secrete 
antibody molecules. Each B cell has on its surface approximately 10 5 
receptor molecules, each receptor having an identical variable (V) region 
or antigen-binding site. The population of B cells is very diverse, with 
different B cells expressing receptors with different V regions. The 
repertoire, or number of different receptor V regions, is estimated to be of 
order 10 v in mammals. In the absence of stimulation, B cells are small 
nondividing cells. The binding and cross-linking of receptors on the surface 
of a B cell by a ligand, such as the polysaccharide on the surface of a 
bacterium or an antibody in the serum complementary in shape to the 
receptor, can cause the B cell to become activated, i.e., to enlarge, 
proliferate, and secrete antibody molecules with the same V region as the 
cell's receptors. 

Modeling systems with 10 7 distinct B-cell species, with behavior 
governed by chemical reactions occurring on the surface of the cells, is the 
challenging rask that we approach in this paper. To this end we employ the 
continuous shape space formalism. This was introduced by Segel and 
Perelson (~4) in the context of a highly schematic model that was designed 
to illustrate certain general principles, notably the assertion that the 
immune system should be poised in a state of stability, but not excessive 
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stability. A similar schematic model was introduced by Percus, (9) who 
exploted the equilibrium behavior of a class of immune network models 
using potential methods. The model considered here is an extension of that 
of Segel and Perelson, (14) but is considerably more realistic in its explicit 
consideration of antibody molecules and their chemical reaction with each 
other and with receptors. The underlying chemical model follows that 
introduced by Perelson (1~ for a restricted case in which only two B-cell 
clones and the antibodies they produced were considered. Analytic and 
numerical solutions of the model equations will be presented elsewhere. 

2. FORMULATION OF THE MODEL 

We introduce the following notation. 

Ao(y, t) dy: concentration of free antibodies (at time t) with shapes 
in the range (y, y + dy), for very small dy. 

A l(X, y, t) dy: number of antibodies of shapes in the range y, y + dy 
bound at one site to receptors on a cell of type x. 

A z(X , y, t) dy: number of antibodies of shapes in the range y, y + dy 
bound at two sites to receptors on a ce l !of  type x. 

P(x, t): total number of receptor sites per cell, shape x. 

Po(x, t): corresponding number of free receptor sites per cell. 

C(y, y', t) dy dy': concentration of complexes formed of antibodies 
having shapes in the range (y, y + dy) with antibodies having shapes 
in the range (y', y' + dy'). 

B(x, t) dx: concentration of cells that bear receptors with shapes in 
range (x, x + dx). 

By "cell" we always mean "B cell." By "receptor" we mean an 
immunoglobulin (antibody) receptor on the surface of a B cell. The 
subscript 0 denotes a free molecule; the subscript 1 a molecule bound at 
one site; the subscript 2 a molecule bound at two sites. 

In the present model we ignore the possibility that an antibody bound 
at two sites is bound to a single receptor. Such states, called monogamous 
bivalent attachments, are possible for very flexible antibodies, and can be 
inclulded in more detailed theories. Here we assume that all doubly-bound 
antibody is a cross-link between two receptors. 

We must document the reversible binding of free antibody Ao to free 
receptor sites Po, to form single bound antibody, 

Ao(y, t) + B(x, t) Po(x, t ) .  V~l(X.y) ~_l(x.y) " A l ( x ' y ' t )  B(x ' t )  (la) 
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and the binding of singly bound antibody to a second receptor site to form 
a cross-link, 

(v - 1 ),~2(x, v )  
Al(X, y, t)+Po(x, t ) .  2~_2(x,y) " Az(x, y, t) (lb) 

In (1),/~l(x, y) and/c l(x, y) denote the shape-dependent rate constants of 
the reaction for antibody binding from solution to a cell, and/~2(x, y) and 
/~ 2(x, y) denote the shape-dependent rate constants for receptor cross- 
linking. In (1) and (2) the statistical factors v and v 2 appear, since the rate 
constants refer to individual sites that are assumed to be equivalent and 
characterized by the same forward and reverse rate constants. Each 
antibody has v sites, with valence v = 2  for IgG and v=  10 for IgM 
antibodies. 

Similar to (la) and (lb), we symbolize the formation of antibody- 
antibody complexes by 

v2~+ (y, y') 
Ao(y, t) + Ao(y', t ) .  m_(y,y'~ " C(y, y', t) (2) 

In the present study we shall neglect receptor internalization and 
synthesis, so that the number of immunoglobulin receptor sites per cell is 
constant. Also, we assume that all cells have the same number of receptor 
sites, i.e., 

P(x, t) = P = const 

Po(x, t) + f Al(x, y, t) dy + 2 f A2(x, y, t ) d y = P  

(3) 

(4) 

All integrals will be taken over a symmetric shape interval of "length" 2L, 

F r o m  

antibody are 

OAl (x, y , t )=vfq(x,  y)Ao(y , t )Po(x , t )  k l(x, y)Al(x,  y, t)  
~t 

--  ( v -  1 ) /~2(x ,  y) AI(x, y, t) Po(x, t) 

+ 2/~_2(x, y) A2(x, y, t) 

- L < x < L ,  - L < y < L  (5) 

(1), the differential equations for singly and doubly bound 

(6a) 

aA2 (x, y, t) = (v - 1)/~2(x, y) Al(X, y, t) Po(x, t) 
c~t 

- 2k_2(x, y) Az(x, y, t) (6b) 
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Implicit in these equations is the simplifying assumption that when cells are 
born or die, they have on their surface the current average number of 
singly and doubly bound antibodies. Thus changes in B(x, t) will not affect 
the number of singly or doubly bound antibodies per cell. 

For free antibody we have the following kinetic equation, given 
schemes (1) and (2) and taking into account antibody secretion at rate SA 
per cell and degradation of free antibody with rate constant dA: 

c~A o(y, t) 
Ot - f r h  (y,y ' )C(y,y ' , t )dy'  

-Ao(y  , t) f v2rh+(y, y') Ao(y', t) dy' 

-Ao(y, t) f vkl(x, y) Po(x, t) B(x, t) dx 

( ,  

+ J ~_l(x, y) Al(x, y, t) B(x, t) dx 

-dAAo(y, t)+ SA(y, t) B(y, t) (7) 

Antibody-antibody complex is governed by the kinetics of scheme (2), 
together with a destruction term (proportional to the factor dc) that 
combines nonspecific losses and macrophage endocytosis: 

c3C(y, y', t)/c3t= t)2ff/+ (y, y')Ao(y, t)Ao(y', t) 

- r h  (y, y') C(y, y', t ) -dcC(y,  y', t) (8) 

The antibody secretion rate for y-cells [that appears in (7)] will be 
determined by 

OSA(y, t)/~t=kA [SMqA(y, t ) -  SA(y, t)] (9a) 

where the constant SM represents the maximal secretion rate. The expres- 
sion 

qA(y , t )=qAIp- l  f A2(y,x,t)dx ] (9b) 

where qA is defined to have a maximal value of unity, states the functional 
dependence of the secretion rate on the fraction of cross-linked receptors. 
The function qA may also depend on various cytokine concentrations. 
These factors, secreted by helper T cells and other cells, are regarded as at 
some suitable constant level in this B-cell model. Thus, no dependence on 
cytokine concentrations is written into the present version of our equations. 
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Equations (9a) and (9b) have the property that if A 2 w e r e  independent 
of time, then qA would be time-independent and the secretion rate SA 
would reach a steady value on a time scale determined by kA. Hence, at 
steady state the dimensionless quantity qA gives the fraction of maximal 
secretion that occurs as a function of receptor occupancy. By using a 
differential equation to determine SA(y, t), we account in a crude fashion 
for the delays involved in lymphocyte activation and the "gearing up" for 
antibody secretion. This generally takes several days. 

Finally, B cells proliferate at a rate kBrB(x, t), where kE is a 
representative time constant for proliferation (so that the function rE is 
dimensionless). There is an influx mE from the bone marrow and a per 
capita death rate dB: 

~?B(x, t)/Ot = kErE(x, t) B(x, t) + mB -- dBB(x, t) (lOa) 

Both mB and dE will be assumed constant. The dimensionless proliferation 
rate 

rB(x, t)= rB [P-~ f A2(x, y, t) dy, i B(y, t) dy, B(x, t) ] (10b) 

depends on the fraction of cross-linked receptors, the total B-cell popula- 
tion, and the number of cells of type x. [-Note that on the left and right 
sides of (10b) there appear two different functions rB(.,-) and rB(-,-,. ). A 
similar notational practice is employed in (9b).] In a full model, cytokine 
concentrations would also affect rB, but here the concentration of such 
nonspecific growth factors is assumed to be proportional to the total 
population size ~ B(y, t) dt. The dependence of r E on the specific clone size 
B(x, t) models such effects as crowding in the lymph nodes and in the 
spleen. 

Equations (6)-(10) constitute our mathematical model: there are six 
equations for A2, A1, Ao, C, B, and SA--With the conservation equation 
(4) permitting the expression of Po in terms of A1 and A 2. 

3. D I M E N S I O N L E S S  E Q U A T I O N S  

We now introduce scaled dimensionless variables. As a time scale we 
employ dff 1, the half-life of unstimulated B cells [see (10a)]. Accordingly, 
the dimensionless time T is given by 

T =  t/clE 1 (11) 
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"Spatial variables" (in shape space) x and y are nondimensionalized in 
terms of the shape range 2L: 

2 = x/(2L), y = y/(2L) (12a) 

However, we immediately drop the tildes; from now on all spatial variables 
are dimensionless. 

We run into difficulty with respect to the scale/~ for the B-cell concen- 
tration. /~ may depend strongly on the parameter values in a way that is 
hard to predict in advance. More vexing is the fact that for a given set of 
parameters the scale of B may vary markedly for different clones. We thus 
leave/~ unspecified for the present in the scaling, 

b = 2LB/B (12b) 

In writing (12b) we have taken cognizance of the fact that, by definition, 
B is a concentration per unit distance in shape space. Thus the total B-cell 
concentration has the magnitude of 2L times a typical value of B. Similarly, 
the total source of B cells is 

rhr~ = 2LmB (12c) 

The secretion rate will be scaled by its maximal value SM: 

s = SA/SM (12d) 

We denote the equilibrium association constants for antibody-receptor 
site, receptor cross-linking, and antibody-antibody binding by K" 1, K" 2, 
and ~r: 

/~1( x, Y)~ kl(X, Y)/k 1( x, Y) (13a) 

K~(x, y ) -  f~(x, y)/f_~(x, y) 

/14r(y, f )=  fft+(y, y')/rh(y, y') 

(13b) 

(13c) 

We write 

Kl(X, Y)= VKl(X , y)/K1 (14a) 

K2(x, y )  = (v - 1 ) K 2 ( x ,  y)/(2t<2) 

M(y ,  y ' ) =  v2M(y, y ' ) /#  

(14b) 

(14c) 
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where the normalization factors ~c~, ~2, and # are chosen so that 

f / q (x ,  y) @ = l, (15a) 

f K2(x, y) dy = 1, (15b) 

f M(y ,  y') dy '= 1 (15c) 

Note that ~c 1 and # have the dimensions of inverse concentration and that 
Kl(x, y), K2(x, y), and M(y,  y') are dimensionless. 

Let the constants koff and moff be typical values of /~_l(x, y) and 
r h  (x, y), respectively. We assume that the rate of dissociation of a site on 
a doubly bound antibody,/~-2,  is of the same order of magnitude as that 
of a site on a singly bound antibody, /~ 1, so that kof f provides a proper 
scaling for both. With these, we define dimensionless rate constants as 
follows: 

k 1 ~- ]~ 1/koff' kl -- kx/koff~l, k - 2  ~-/~-2/koff ,  k2 = fc2/koffK2, 

so that 

m = r~ _ ~moll, m + = rh + ~molt # 

K 1 = vkl/k_ 1 (16a) 

K2 = (v - 1 ) kz/Zk_2 (16b) 

M = vZm +/m_ (16c) 

The free antibody concentration Ao will be scaled with the aid of a 
balance between antibody secretion by B B cells at maximal rate SM, and 
destruction of antibody-antibody complexes at rate dcC. [See Eqs. (7) 
and (8).] This gives S M B ~ d c C .  The relation between C and Ao can be 
estimated from steady-state conditions. We assume that Ao(y ) and 
S Ao(y')  dy' can be estimated by the scale for A o and that S C(y, y') dy' can 
be estimated by the scale for C. We obtain C ~ # A  2 from (8), with dc=O, 
and (13c), (14c), and (15c). Hence A o ~  (SMB/#dc) 1/2. The free antibody 
concentration "per unit shape" Ao must be multiplied by the shape range 
2L to estimate the actual antibody concentration. We therefore take 

ao = 2LA o/ ( S M IB/12dc ) 1/2 (17)  

Similarly, because C(y, y', t) depends on both y and y', the transition from 
C to c requires multiplication by (2L) 2. Upon incorporating our earlier 
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estimate for C, we are led to the following scaled dimensionless version of 
the complex concentration: 

(2L)2c 
c - - -  (18a) 

SMB/dc 

Finally, let the dimensionless concentrations of free receptor sites, singly 
bound antibody, and doubly bound antibody be 

Po = Po/P, al = 2LA 1/P, a2 = 2LAz/P (18b) 

Upon substituting the above variables, we find that the dimensionless 
versions of equations (4), (6) (8), (9a), and (10a) are 

po(x, T) + ] al(x, y, T) dy + 2 f a2(x, y, T) dy= 1 (19) 

O a l ( x ,  y ,  T )  

OT 
vc&l(x, y)ao(y, T)po(x, T) -k_1(x ,  y)a~(x, y, T) 

- (v -1) o~k2(x, y) al(x, y, T)po(x, T) 

+ 2k_2(x, y) a2(x, y, T) (20a) 

c 3 a 2 ( x ,  y ,  T )  

~3T 
(V- 1) ~k2(x , y) a~(x, y, T) po(x, T) 

- 2k_2(x, y) a2(x, y, T) (20b) 

Oao(y, T) 
~T = vp~ f m (y, y') c(y, y', T) dy' 

- vpctao(y, T) f v2m+(y, y') ao(y' , T) dy' 

+ ~- l f k_ l (X ,  y) a l ( x  , y, T) b(x, T) dx 

-- ~ao(y, T)fvkl(X, y) po(x, T) b(x, T) dx 

+ e~ptPcs(y, T)b(y, T ) -  e~Aao(y, T) (21) 

Oc(y, y', T) 
OT 

- v2vm+(y, y') ao(y, T) ao(y', T) 

- v m  (y, y')c(y, y', T ) -e~cc(y ,  y', T) (22) 
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as(y, T) 
~I[qA(Y, T ) - s ( y ,  T)] (23) 

aT 

ab(x, T) 
= [yrs(x, T ) -  1] b(x, T )+  ~ (24) 

aT 

The dimensionless parameters are listed in Table I. Particularly 
important, as we shall see shortly, is e=kor~ /d~;  e measures the ratio of 
a typical chemical half-life to the half-life of a B cell. Clearly e ~ 1. 
Parameters v, 7, ~/-1, 0a ,  and 0c  have analogous interpretations. From 
(14) and (15) we see that p gives a measure of the ratio of antibody- 
antibody to antibody-receptor binding affinities. The parameter ~ estimates 
the ratio of antibody concentration to the half-saturation constant of 
ligand-receptor binding ~c11. The parameter { estimates the ratio of 
receptor concentration to ~:~-1. As for {, from (10a) it follows that fftB/du 
is the B-cell concentration in the virgin state. If we take /~ at the virgin 
state, ~ = 1. If B is an estimate of the much higher B-cell concentrations 
attained after stimulation, then r will be a small parameter and therefore 
negligible. 

4. MULTIPLE-SCALE ANALYSIS  

To exploit the simultaneous presence of different time scales, we 
employ a version of the method of multiple scales (see Lin and Segel (7) for 
an elementary exposition). To this end, we introduce the fast time r: 

z=--g-XT (25) 
We assume 

ao(y, T) = a(o~ z, T) + ea(o*)(y, z, T) + . . .  (26) 

c(y, y', T)=c(~ y', z, T ) + e c ~  y', z, T )+  . . .  (27) 

Table I. Dimensionless Parameters 

Parameter Definition 

s dB/kor; 
c~ ~q(SM~/#dc) ~/2 

v m odk or; 

P I~/xl 
PB~ 1 

~ A d A/clB 
I/Ic dc/da 
rl k a/dB 

rhB/BdB 
Y kB/dn 

OJ K2 P 
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with similar equations for other dependent variables. Note, for example, 
that a(0 ~ is a function of three variables. Since z is a function of T, we have 
by the chain rule 

Oao(y , T) aa~)(y, ~, T) [Oa~)(y, 5, T) aa~')(y, ~, T)] 
3T 0z +e k 0T ~ 0~ + ..- (28) 

We perform analogous calculations in substituting our series into the 
governing equations (19)-(24). 

We expect some sort of generalized conservation of antibody. Thus we 
combine (21), (20), and (22) to obtain 

aao(y, T) 
~T 

+~7-1 f (al(x, y, T)+a2(x, y, T)) Ob(x, - ,T] 
3T 

dx 

~c(y, y', T) 
+ pa | dy' 

~T J 

=epics (y ,  T)b(y, T)--~kAao(y, T)--pC@c f C(y, y', T) dy' (29) 

which is an equation describing the change with time in the total concen- 
tration of antibody y. 

Upon inserting appropriate series into the secretion equation (23) and 
the B-cell equation (24) and expanding, we find at lowest order simply 

Os(~ , ~, T)/a'c = O, ~b(~ ~, T)/Oz = 0 (30a,b) 

Thus s ~~ and b (~ functions only of the slow time T, not of z. Moreover, 
employing (30b) we find that the lowest order terms in (29) add to zero. 
We reach the important conclusion that the total amount of antibody of 
shape y is a slowly varying function of time, At(y ,  T): 

a(o~ r, T)+ fc~ -1 f b(~ T)[a]~ y, r, T)+a(2~ y, ~, T)3 dx 

+ pc~ f e(~ y', r, T) dy' = At(y,  T) (31) 

(Note that the factors ~e-1 and pc~ appear because different parameters 
have been used to normalize the various concentrations.) All we can say 
about A r at present is that initially 

Ar(y ,O)=A~(y )  (32) 
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where A~(y)  is known in terms of the initial values of ao, b, al,  and c. One 
possibility is 

Ai~(y)=ao(y, O) (33) 

i.e., all antibody is initially free in solution. 
It is the time scale T that interests us. We do not care to follow the 

details of the chemical reactions (that typically occur on a fast "k 1- scale 
of milliseconds, perhaps ranging up to minutes in the case of very slow 
back reactions). What are of primary immunological interest are changes in 
such variables as the B-cell population or the total antibody concentration 
that occur over hours or days. Our small parameter e is the ratio of fast to 
slow time scales. The remarks just given imply that we should calculate 
various functions in the limit 

8 ~ 0 ,  T =  st fixed (so z ~  ~ )  (34) 

Let us examine the lowest order approximation of (20) in the limit 
(34). 

~a~~ y, r, T ) / ~  

=-V~kl(X , y)a(o~ r, T)po(X, z, T ) - k _ l ( x ,  y)a]~ y, r, T) 

- (v - 1) cok2(x, y) a~~ y, ~, T) po(x, ~, T) 

+ 2k 2(x, y) a~~ y, r, T) (35a)  

Oa(2~ y, z, T)/8z 

= (v - 1) cokz(x, y) a]~ y, z, T) po(x, z, T ) -  2k_2(x, y) a(z~ y, r, T) 

(35b) 

As prescribed by (34), we ignore r-transients and consider the quasi- 
steady limit r ~ 0% T fixed--in which a] ~ and a~ ~ are essentially in 
chemical equilibrium. We shall use the notation 

lim a~~ y, "c, T )=  a~~ y, T) (36) 

T fixed 

with analogous notation for similar variables. 
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In order to obtain cleaner notation, from now on we drop the super- 
script zero that should appear on P0, a0, al, a2, b, c, and s in equations 
(37)-(44). Thus, from (35) and (16) 

al(x, y, T) = 7Kl(x, y) ao(Y, T) po(x, T) (37a) 

a2(x, y, T)= coK2(x, y)al(x, y, T)po(x, T) (37b) 

Employing (37), we obtain from (19) a quadratic equation with one real 
positive solution, written in a form analogous to that given in Perelson and 
DeLisi (m as 

- 1  + [1 + 45(x, T)] ~/2 
po(x, T)-26(x ' T)[-1 +c~K~(x, y) ao(y, T) dy] (38a) 

where 

2~co ~ X2(x, y) Iq(x, y) ao(y, r) dy (38b) 
cS(x, T)= [l +c~ ~ K,(x, y) ao(Y, T) dy] 2 - 

Of more importance to us are the corresponding expressions for the 
number of singly bound antibodies and the number of cross-links in terms 
of the free antibody concentration. From (37) and (38) 

~Kl(X,y) ao(y,T) - l + [ l + 4 6 ( x , T ) ]  1/2 
al(x, y, T) - I + c~ ~ K~(x, z) ao(z, T) dz 25(x, T) (39a) 

K2(X , y )  Kl(X , y )  ao(y, T) 
a2(x , y, T) - ~ K2(x, z) Kl(x, z) ao(z, T) dz 

1 + 26(x, T ) -  [1 + 45(x, T)] ~/2 
x (39b) 

45(x, T) 

At lowest order the quasi-steady-state version of (22) yields 

c(y, y', T)=M(y ,  y')ao(y, T) ao(y', T) (40) 

where M is the association constant for antibody-antibody binding defined 
in (14). In the quasi-steady limit the conservation equation (30) reads 

a o ( y  , T) AI- ~0~ -1 f b(x, T)[al(x, y, T) + a2(x, y, T)] dx + po~ f c(y, y', T) dy' 

= At(y,  T) (41) 

where a l ( x  , y, t) and a 2 ( x  , y, T) are given by (39) and c(y, y', T) is given 
by (40). 

822/63/5-6-21 
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As is common in multi-scale expansions, to complete the equations for 
the lowest order terms, we must consider certain higher-order equations. 
Employing (41) and the quasi-steady limit, we obtain from the O(e) terms 
in the expansion of (29) 

aAr(y, T) 
= ~p~cs(y, T) b(y, T) - t~AaO(y, T) -- ~cpc~ j c(y, y', T) dy' 

OT 

+ f ct-l f (al(x, y, T)+a2(x, y, T ) ) ~ d x  

(42) 

This equation describes the slow change in the total antibody concentra- 
tion owing to antibody secretion, together with the loss of free antibody 
and complex. The O(e) terms in (24) give an equation for the change in the 
B-cell concentration: 

~b 
~--~ (y, T)= [7rR(y, T ) - 1 ]  b(y, T) + ~ (43) 

Finally, the O(e) terms in Eq. (23) give for the secretion rate 

Os 
g-~ ( y, T) = r/[qA ( Y, T) - s( y, T) ] (44) 

Recapitulating, equations (42)-(44) are three equations for the 
development in "slow" time T of the (lowest order approximations) to 
the total antibody concentration At,  the B-cell concentration b, and the 
secretion rate s. The various required chemical concentrations, Po, al, a2, 
and c, are given in terms of the free antibody concentration a0 by 
(38)-(40). At any given instant ao can be determined from b and Ar by the 
nonlinear integral equation (41). The formulation is completed by suitable 
initial and boundary conditions and specification of the various equi- 
librium constants. The initial conditions are the conditions at the end of 
the fast transient; they can be ascertained as in the usual approach to 
quasi-steady-state assumptions (see, for example, Segel(13)). For boundary 
conditions one can use periodic boundary conditions as in Segel and 
Perelson (14) or deal explicitly with a finite-dimensional shape space, as in 
De Boer et aL (5) As in Segel and Perelson, ~14) we take the binding affinity 
(dimensionless) of shape y to shape x to be a Gaussian centered about the 
perfectly complementary shape - x :  

Kl(X, y) = Kma x exp[ - (x + y)2/Za~] (45a) 

K~2(x, y) = Kr, ax exp[ - (x + y)2/2cr22 ] (45b) 

3~r(y, y') = Mma x exp[ - (x + y)2/Zcr~t] (45c) 
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It remains to specify the secretion and proliferation functions qA and 
rB. We shall assume for simplicity that there is a linear dependence on 
the fraction of receptors cross-linked. In particular, for some dimensionless 
parameter qo 

qA(Y, T) = qo f a2(y, x, T) dx (46) 

Similarly, but with further assumptions concerning the other factors of 
(10b), we take for the dimensionless proliferation function in (43) 

No premultiplicative factor is necessary here [such as q0 in (46)], since we 
have already introduced the factor kB in (10a). 

As we have mentioned, immunological evidence suggests that the 
growth rate of B cells and the rate of antibody secretion depend on the 
degree of receptor cross-linking. Here, using the method of multiple time 
scales, we have shown how to compute the average number of cross-links 
per cell and then employ that information to formulate B-cell growth and 
antibody secretion rate equations. However, this approach, even though 
accurate on the long time scale of interest in predicting B-cell growth and 
serum antibody concentrations, is still quite complex, especially when 
formulated in the context of a continuous shape space model. In order to 
gain additional insights, we present a simple example using only two B 
cells. 

5. A TWO-B-CELL EXAMPLE 

Consider a system composed of two B-cell populations, B (1) and B (2), 
where B (1) has receptors complementary to those on B (2). Assume that the 
antibodies A (1) secreted by B (1) are complementary to antibodies A (2) 
secreted by B (2), and are able to bind and cross-link receptors on B (2) and 
form complexes C with A (2). As before, we use the subscripts 0, 1, and 2 
to distinguish molecules that are bound at 0, 1, or 2 sites. The specification 
of this system is then given by following equations: 

dA(o ~} SAB{1)__dAAO)_ , , f~  a ( 1 ) p ( 2 ) R ( 2 ) - ~  1A]I}B (2) 
dt = '~'~1~0 ~ 0  ~ 

-- vzfft+ A(ol)A(o2)+ r h  C (48a) 
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d A ]  ~) 

dt 
= v  F n(,)o(2)_k~ IA]~) ( v _ l ) F  a(1)p(2) r ~ l X ~ 0  a 0  - -  1"~21Xl ~ 0  

+ 2/~ 2A(21) (48b) 

d A (21) 
= (v - 1) i~2~1 1 / ~  A(l) io(2)--0  - -  2/c 2 A(I) (48c) 

dt 

dB (1) 
= mB + kBrB(A(22))B (1) -  dB B (1) (48d) 

dt 

dS(1A) = kA [SMqA(A(22)) - S~ ) ] 
dt 

(48e) 

dC 
dt - I)21~'l + .*od (1)ft..o(2) _ t~ _ C - dc  C (48f) 

and a set of five equations analogous to (48a)-(48e), but with the super- 
scripts (1) and (2) interchanged. In (48d) and (48e) the functional 
dependence of the B-cell growth rate and the antibody secretion rate on the 
degree of cross-linking is explicitly indicated, but, for simplicity, other 
factors such as clone size dependence are not. In addition, the number of 
free receptor sites P(o i), i = 1, 2, is given by the conservation equation 

P(~  A ( r ) -  2A(j') = P, i = 1 , 2  0 ~ 1  (49) 

where i' is the index of the cell that antibody i binds, i.e., i' = 2 if i = l and 
i ' = l i f i = 2 .  

This system of 11 ordinary differential equations was studied numeri- 
cally by Perelson. (1~ However, on the time scale of interest, days to 
months, essentially the same results can be obtained in a much more 
efficient manner by solving the reduced set of six differential equations that 
result from the multiple-time-scale method. In this example, the analog of 
equations (42)-(44), left in dimensional form, are 

dA(~ ) Sii)Bii) dAA(oO_.J l / f d ( l )d (2 )  
2 i  = ~ - ~  . . . . .  o - o  + ( A ~  ~ ,(,),dS"') - + A 2  )--~, 

dB ~i) 
dt = m B + k B r B ( A ~ ' ) ) B ( ~  i =  1, 2 

d S  ~i) 
~_A - k  [SMqA(A(2 ~')) -- S(~)], i =  1, 2 
dt - 

A~)= A(o') + (A~0+ A(j )) B ( r ) +  ~rA (')d(2) . . . . .  o --o , i = 1 , 2  

i = 1 , 2  (50a) 

(50b) 

(50c) 

(50d) 
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The number of singly bound antibodies and the number of cross-links per 
cell are determined on the fast chemical scale to be 

A~i) = v ~(i)p(,,) (51a) "~1~*o - o  , i =  1, 2 

A~ i) = K2K1 n(i)rp~'~q2"lo e-0 , , i =  1, 2 (51b) 

where K1 =vkl/k 1, K2= (v-1)k2/(2]~ 2), and where P~0/') is specified by 
substituting (51) into (49) and solving the resulting quadratic equations. 
Once P~o i') is found as a function of A~o ~), A~o ') is determined by the slowly 
varying conservation equation 

A(o ~) • ~- ,~ (~)p(r)n(r) + K2K~A(j)[p(j')]2B(i') + ~ta (l)a (2) - -  A (i)(t] 
* X l  zJt 0 - - 0  

i = 1 , 2  (52) 

where M = v2rh +/rh . Note that this equation is analogous to (41) and the 
analogue o'f (40) has been used so that C does not appear. 

The advantages of this system of equations over the original 11-equa- 
tion model are that (i) rates constants for the various forward and reverse 
chemical reactions need not be specified, only the approporiate equilibrium 
constants, (ii) the number of equations is reduced, and (iii) numerical 
integration is more rapid, since the equations are not as stiff. The major 
disadvantage is that one has to solve a mixed system of differential and 
algebraic equations. 

In a variety of other models (e.g., De Boer, ~) De Boer and 
Hogeweg, (2) Stewart and Varela, (~6'~7) Weisbuch et aL, (18) De Boer and 
Perelson (4)) in which the chemical reactions of antibody binding and cross- 
linking cellular receptors were not included and in which a rigorous separa- 
tion of time scales was not carried out, the disadvantage of dealing with a 
mixed differential algebraic system was unknowingly sidetracked. The 
various authors implicitly assumed that they were working on the long 
time scale and thus neglected fast chemical reactions. With the chemistry 
neglected, no distinction was made between the total amount of antibody 
A~ ) and the amount free A~o ~). Thus, the algebraic equations (52) that 
determine A ~o i) from A ~) were not utilized. Our results can be used to show 
under what conditions these previous analyses are justified. For example, in 
situations where the number of antibodies greatly exceeds the total number 
of receptor sites, one is justified in ignoring the loss of free antibody 
by binding to cellular receptors. Under such circumstances, one can 
approximate A~o ~) by A~ ~ and use (49) and (51) to compute the number of 
cross-links as a function of A ~). For the two-B-cell model, one finds, as in 
Perelson and DeLisi, (la) that 

A~2~ 1+25-(1-4-~ + 46)1/2] (53a) 
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where 

2K2K1A~P (53b) 
3 -  [1 +K1A~)] 2 

In analytical work, to bypass the algebraic complexities inherent in using 
an expression containing a radical, Dembo and Goldstein ~6~ derived a 
simple rational (Pad6) approximate for A(2 i~. The previously mentioned 
models of De Boer, ~1) De Boer and Hogeweg, ~2) Weisbuch et al., ~ls) De 
Boer et aL, ~3~ and De Boer and Perelson ~4) did not employ (53) for the 
number of cross-links per cell. Rather, they utilized the following 
phenomenological function, which is equivalent to the Dembo and 
Goldstein Pad6 approximant: 

A~i3= (01A(~) 02 + A(C~)(O2 +-A~,) (54) 

where 01 and 0 z are constants. The functions given by (53) and (54) are 
both "bell-shaped" and symmetric about their maximum when plotted on 
a logarithmic scale, as is appropriate when dealing with antibody concen- 
trations. Thus, the approximations capture the main features of a cross- 
linking curve. 

To summarize, in cases where A~oi)~A(~ ~, the original system of 11 
differential equations can be reduced to a set of 6 differential equations. 
Clearly, in systems containing more than two B cells, a similar but substan- 
tially greater reduction in the number of equations is possible. However, 
the validity of this full reduction depends on A(o i) being approximately 
equal to A ~3 throughout the dynamics. If the B-cell populations expand, so 
that binding to cells becomes substantial, this need not be the case. In this 
paper we have shown that by solving (52), in the case of the two-B-cell 
model, or (41) in the continuous shape space model, one can rigorously 
determine the validity of the approximation A(oi)~A~ 3. We have also 
shown rigorously how to deal with the long-time behavior of the system 
when A~o g~ is not approximately equal to A~ ). 

6. C O N C L U S I O N  

Our final model consists of Eqs. (42)-(44) for the development in time 
of the total antibody A v, the B-cell population b, and the secretion rate s--  
all functions of the shape variable y and the time T. Equations (46) and 
(47) define qA and rB. The basic equations are supplemented by (39)-(41), 
which must be solved for ao, al, a2, and c in terms of the three 
fundamental unknowns. 
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F o r  the  case of two B cells, so lu t ions  have been  p rov ided  by  

Pe re l son  (~~ a n d  De  Boer  et al. ~3) a n d  exhib i t  a wide range  of behav io r s  

d e p e n d i n g  u p o n  p a r a m e t e r  choices. The  fo rmidab le  task of ana lyz ing  

so lu t ions  to the genera l  m o d e l  is u n d e rway .  Resul ts  will be r epor ted  in a 
fu ture  pub l i ca t ion .  
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